skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vis, Morgan L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The relative frequency of sexual versus asexual reproduction governs the distribution of genetic diversity within and among populations. Most studies on the consequences of reproductive variation focus on the mating system (i.e., selfing vs. outcrossing) of diploid‐dominant taxa (e.g., angiosperms), often ignoring asexual reproduction. Although reproductive systems are hypothesized to be correlated with life‐cycle types, variation in the relative rates of sexual and asexual reproduction remains poorly characterized across eukaryotes. This is particularly true among the three major lineages of macroalgae (green, brown, and red). The Rhodophyta are particularly interesting, as many taxa have complex haploid–diploid life cycles that influence genetic structure. Though most marine reds have separate sexes, we show that freshwater red macroalgae exhibit patterns of switching between monoicy and dioicy in sister taxa that rival those recently shown in brown macroalgae and in angiosperms. We advocate for the investigation of reproductive system evolution using freshwater reds, as this will expand the life‐cycle types for which these data exist, enabling comparative analyses broadly across eukaryotes. Unlike their marine cousins, species in the Batrachospermales have macroscopic gametophytes attached to filamentous, often microscopic sporophytes. While asexual reproduction through monospores may occur in all freshwater reds, the Compsopogonales are thought to be exclusively asexual. Understanding the evolutionary consequences of selfing and asexual reproduction will aid in our understanding of the evolutionary ecology of all algae and of eukaryotic evolution generally. 
    more » « less
  2. null (Ed.)
  3. Freshwater red algae have been collected on the African continent since the early 1800s. However, the collections have been sparse and geographically restricted. The present study sought to bring together information from the literature, herbarium specimens, and newly collected specimens to provide an updated assessment of the freshwater red algal diversity of the African continent with a focus on the species-rich Batrachospermales. DNA sequence data and morphological observations were conducted for recently collected specimens. From these analyses, four new taxa are proposed: Kumanoa bouwmanii, Sheathia murpheyi, Sirodotia kennedyi, and the form taxon ‘Chantransia azurea’. DNA sequence data had been previously published for Kumanoa iriomotensis, Sirodotia aff. huillensis, and S. suecica. With this study, we have added sequence data for Torularia atra as well as a second location for S. suecica. In total, there are eight taxa with sequence data, of which five appear to be endemic. From our assessment of literature reports and herbarium specimens, we conclude that Kumanoa, Sirodotia, and Torularia have often been collected and are relatively geographically widespread with two or more species present. In addition, Montagnia, Nothocladus, Paralemanea, Sheathia, and Visia as well as Batrachospermum section Gonimopropagulum are represented in the flora. We estimate that 14 to 19 batrachospermalean taxa can be recognised for the African flora, and that with more study, that number could easily double or triple based on the diversity known from other well-studied continents. 
    more » « less
  4. null (Ed.)
  5. Since the first phylogenetic study of the order Batrachospermales,Batrachospermumwas shown to be paraphyletic. Subsequently, sections of the genus have been methodically investigated usingDNAsequences and morphology in order to propose new genera and delineate species.BatrachospermumsectionTurfosais the last section with multiple species yet to be examined. New sequence data of specimens from Europe and the United States were combined with the sparse sequence data already available. Phylogenetic analyses usingrbcL andCOI‐5P sequences showed this section to be a well‐supported clade, distinct fromBatrachospermumsectionBatrachospermumand its segregate genera. Section Turfosais raised to the generic rank asPaludicolagen. nov. Substantial genetic variation within the genus was discovered and 12 species are recognized based onDNAsequence data as well as morphological characters and geographic distribution. The following morphological characters were applied to distinguish species: branching pattern (pseudodichotomous or irregular), whorl size (reduced or well developed), primary fascicles (curved or straight), spermatangia origin (primary or secondary fascicles), and carposporophyte arrangement (loose or dense). Previously published species were transferred to the new genus:P. turfosa,P. keratophyta,P. orthosticha,P. phangiae,andP. periploca. Seven new species are proposed as follows:P. groenbladiifrom Europe;P. communis,P. johnhallii, andP. leafensisfrom North America; andP. aquanigra,P. diamantinensis, andP. turfosiformisfrom Brazil. In addition, three unsequenced species in the section,P. bakarensis,P. gombakensis, andP. tapirensis, were transferred to the new genus. 
    more » « less